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symmetric braneworld solutions are embedded in Wick-rotated black hole spacetimes of

Lovelock theory. These are warped solitonic spaces, where the horizons of the black hole

geometries correspond to the possible positions of codimension-2 branes. The horizon

temperature is related via conical singularities to the tension or vacuum energy of the

branes. We classify the braneworld solutions for certain combinations of bulk parameters,

according to their induced curvature, their vacuum energy and their effective compactness

in the extra dimensions. The bulk Lovelock theory gives an induced gravity term on the

brane, which, we argue, generates four-dimensional gravity up to some distance scale. As

a result, some simple solutions, such as the Lovelock corrected Schwarzschild black hole in

six dimensions, are shown to give rise to self-accelerating braneworlds. We also find that

several other solutions have self-tuning properties. Finally, we present regular gravitational

instantons of Lovelock gravity and comment on their significance.
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1. Introduction

Combined cosmological and astrophysical data indicate that at least 96% of the actual

matter content of the Universe has yet to be detected in particle accelerators. This is

a correct statement provided we assume a homogeneous universe described by Einstein’s

field equations. One fourth of this yet unseen component, dark matter, we can hope to

discover in the Large Hardron Collider and is an expected, quite natural, cosmological

signature of particle physics theories such as low energy supersymmetry (SUSY). For the
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remaining chunk, usually dubbed dark energy, that has cropped up more recently from

supernovae data [1], the situation is a lot less clearer. Data is best ”fitted” by assuming a

tiny positive cosmological constant of magnitude (10−3eV)4. The mass scale associated to

this energy is that of, roughly, what one expects for neutrino masses, a really tiny number

in the cosmological arena. This cosmological constant is so small because the radius of the

observed universe is by now huge, of size of the square inverse to the mass scale in question.

It is dominant because dark matter is extremely diluted at cosmological scales of roughly

10Gpc whereas super clusters of galaxies such as Virgo are at 20Mpc.

Unlike dark matter, from the point of view of theoretical particle physics, the cosmolog-

ical constant is rather problematic. For the ”natural” value of the cosmological constant,

from the point of view of Quantum Field Theory, is of the order of the ultraviolet cut-

off we would impose for our quantum field theory, ranging from the Planck scale to the

SUSY breaking scale, depending on our theoretical prejudice. The fine tuning we impose

to compensate this vacuum energy by some bare, gravitational cosmological constant is

the biggest known discrepancy between theoretical expectations and our understanding of

experimental data. This is the cosmological constant problem [2] that was there already

there [3] when the precision of existing data pointed towards a value, assumed for simplicity

to be zero.

By admitting the presence of a small, but not null, cosmological constant we add two

additional problems to the ”old” cosmological constant problem [3], namely, why is it so

small and not zero, and why is its density now of the same order as dark matter density.

Why therefore can we observe it now, i.e. the right time that it is possible for us to observe

it in the first place? Dark energy models usually accompanied by scalar fields with suitable

potentials do not solve this fine-tuning problem. They are also generically problematic

due to enhanced radiative corrections associated to the scalar(s) [4] coupling to matter.

Although general relativity is very well tested at solar system scales, both at weak and

strong field regimes [5], it is not so at cosmological scales. In fact, to get an idea of the

colossal difference in scales, take the quotient of the Hubble radius over the Astronomical

unit (earth to sun distance) to get 1015! Therefore, cosmological data, if we do not assume

some extra source of unknown matter or cosmological constant, tell us precisely that gravity

is modified at the infrared.

Taking into account the above discussion, modifying gravity in the infrared is a legiti-

mate theoretical hypothesis that should be taken seriously. As yet, no convincing modifica-

tion of general relativity has been found. Often the problem is experimental, constraints as

for example for f(R) theories in the solar system and in galaxy clusters [6]. However, there

are also theoretical difficulties since a large distance modification spoils our understanding

of asymptotic behaviour, which is very well-defined in General Relativity (GR). Typically,

such models [7, 8] have ghost instabilities [9 – 11] and strong coupling problems [12] which

are as yet not understood and therefore are no better than fitting data with a single,

however small parameter, the cosmological constant.

This of course does not mean there is no such consistent modification. Clearly one

has to try more complex setups and some interesting toy models [13] have been proposed

and are now being put to the test. By far, however, the most successful and popular
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modification is that of self-acceleration [14] present in the Dvali-Gabadagze-Porrati (DGP)

model [8]. There, the small current acceleration of the Universe is understood as a geometric

effect originating from the (unfair) competition between the five-dimensional and four-

dimensional curvature scales. Unfair, because the resulting length scale, the crossover scale,

is of the order of the Hubble horizon today, H0 ∼ 10−34eV . At these length scales gravity

becomes five-dimensional with a very low five-dimensional gravitational scale, roughly of

104GeV and we enter a geometric acceleration phase. Unfortunately, this solution has a

ghost in its linear perturbation spectrum [10, 11]. Furthermore, the results are fuzzed by the

presence of strong coupling problems [12] and either the theory loses linear predictability

(which makes it useless cosmologically) or is completely unstable (see [15] for exact solutions

and beyond linear order). To summarize, therefore, self-acceleration teaches us that we can

in principle explain in a simple way the current acceleration of the Universe by a geometric

effect of a codimension-1 braneworld, but the geometry modification required to attain this

result is not seemingly viable. Along these lines, recently [16] have given an idea on similar

terms where the cosmological constant results from a higher order gravity correction in a

codimension-1 braneworld.

An even more ambitious proposal that emerged in braneworld models is that of the

self-tuning and has to do with the ”old” cosmological constant problem [3]. The idea was

to find models where the tension of the brane, that is its vacuum energy, can be large

without affecting the curvature of the brane and without fine-tuning of it with other brane

or bulk parameters [17]. The best attempt to realize such a kind of model has been in six

dimensions and in the case that the brane is of codimension-2 [18]. These conical branes

have the special property that their tension merely induces a deficit angle in the surrounding

bulk geometry and does not curve the brane world-volume. The brane curvature is induced

from the bulk dynamics and is not directly related to the brane vacuum energy.1 Several

models with codimension-2 branes were studied with various compactifications [19, 20],

however most of them had hidden fine-tunings or curvature singularities present. Although

self-tuning vacua can be found, where indeed solutions of the same curvature correspond to

a (continuous) range of brane vacuum energy, a cosmological constant problem resolution

would require a dynamical selection mechanism of such vacua. This is because, as a rule,

there exist nearby solutions of different curvature, which introduce the question whether

the self-tuning solution is an attractor.

In the present paper, we will examine a completely novel possibility of obtaining ac-

celeration due to geometry as well as certain self-tuning properties. The modified gravity

theory that we will study is Lovelock theory [21] in six dimensions, which is the natural

extension of GR in higher dimensions. The Lovelock theory in six dimensions has in addi-

tion to the Einstein-Hilbert term the Gauss-Bonnet combination. Although the latter is a

topological invariant in four dimensions, it becomes dynamical for higher dimensions and

modifies the gravitational theory. The codimension-2 branes present in the generic vacua of

this theory, can have interesting properties, similar to the ones stated in the previous para-

1We emphasize here that we will not necessarily consider flat brane curvature, but also cases where a

small brane curvature is allowed with a large vacuum energy on the brane.
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graphs. We will find for example self-accelerating cases with non-compact internal spaces

as well as self-tuning vacua for several compact and non-compact vacua. These examples

open new possibilities for consistent self-acceleration and effective self-tuning which need

to be considered in more detail in the future.

In fact, Lovelock theory plays a crucial double role, not only in the bulk, but also for

the brane junction conditions [22]. On the one hand, it provides geometric self-acceleration

and novel solutions which are absent in Einstein theory, and on the other hand, it gives an

induced gravity term on the brane [22, 23], much like in DGP [8]. Here we must emphasise,

that this does not mean that we expect to have Einstein gravity on the codimension-2

braneworld, rather, it means that up to some scale, gravity ”looks” four-dimensional as in

the DGP model. Lovelock theory has the extraordinary geometric property to induce an

Einstein-Hilbert term at the level of the junction conditions [23].

The structure of the paper is as followss: we will firstly present the general black hole

solutions in six-dimensional Lovelock theory and then show how by double Wick-rotation

we can obtain the most general axially symmetric braneworlds with maximally symmetric

codimension-2 branes. Then we will scan through several classes of solutions and analyse

the cases of interest, i.e. the self-accelerating and the self-tuning vacua introducing each

time, as few ”extra bulk parameters” as possible. We will briefly comment on the physical

implications of some new regular instanton solutions of Lovelock gravity and we will finally

conclude.

2. Static black hole solutions

Let us consider the six-dimensional dynamics of gravity with a bare cosmological constant

Λ and a Gauss-Bonnet (GB) term (see appendix A for a more general system with in

addition a gauge field coupled to gravity). The action of the system reads

S =

∫

d6x
√−g

[

1

16πG6
(R + α̂LGB) − 2Λ

]

, (2.1)

where

LGB = RMNKΛRMNKΛ − 4RMNRMN + R2 , (2.2)

is the Gauss-Bonnet Langrangian density, G6 the six-dimensional Newton’s constant and

α̂ the Gauss-Bonnet coupling.

It is straightforward to write down the Einstein equations of motion for the above

action. They read

GMN − α̂HMN = −8πG6ΛgMN , (2.3)

with GMN = RMN − 1
2RgMN the Einstein tensor and the following Gauss-Bonnet contri-

bution

HMN =
1

2
LGB gMN − 2RRMN + 4RMKR K

N

+4RKMΛNRKΛ − 2RMKΛP R KΛP
M . (2.4)
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Our ultimate goal is to find the maximally symmetric solutions of the above equations

of motion. For this purpose, let us consider a four-dimensional space of maximal symmetry

parametrised by κ = 0,−1, 1, with metric

hµν =
δµν

(

1 + κ
4δµνxµxν

)2 . (2.5)

These spaces are four-dimensional flat space, hyperboloid or sphere respectively of curva-

ture R[h] = 12κ. A generalised version of Birkhoff’s theorem for (2.1) states, [24] (see [25]

for the Lovelock version) that every six-dimensional spacetime solution of (2.3) having such

four-dimensional maximal sub-spaces (2.5) is locally isometric to

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2hµνdxµdxν , (2.6)

admitting therefore a locally timelike Killing vector (∂t in the coordinates of (2.6)). The

solution of the potential V for the equations of motion (2.3) is found to be [26, 27]

V (r) = κ +
r2

2α

[

1 + ǫ

√

1 + 4α
(

a2 − ǫµ

r5

)

]

, (2.7)

where the parameters appearing in the action (2.1) have been rescaled to,

α = 6α̂ , 16πG6Λ = 20a2 > 0 (for dS6) , (2.8)

a2 = −k2 < 0 (for AdS6) .

The integration constant µ is

µ =
4πG6M

Σκ
, (2.9)

where M is the AD or ADM mass of the solution and Σκ is the area of the unit four-

dimensional maximally symmetric subspace. Finally, ǫ = ±1, giving rise to two distinct

branches of solutions. The convention of the µ sign is chosen so that the gravitational

mass is always µ > 0. Indeed, as one can easily check by expanding the square root for

large distances, the sign flip in front of µ is necessary to match the Schwarzschild de Sitter

solution behaviour for positive AD mass. The case where 1 + 4αa2 = 0 is special, because

the theory can be written in a Born-Infeld (BI) form [28].

Setting µ = 0 gives us the asymptotic vacua of the theory (2.1) which unlike Einstein

theory are not unique (for given bare parameters in (2.1)). Then, we find that asymptoti-

cally we have an effective six-dimensional cosmological constant

16πG6Λeff = −10

α

[

1 + ǫ
√

1 + 4αa2
]

, (2.10)

with a normalisation like in (2.1). We note in particular, that α gives an effective cos-

mological constant in the bulk even without a cosmological constant term in the action,

i.e. even with a2 = 0. The maximally symmetric space that the solutions asymptote to,

depends on the sign of α and the branch of the solution, i.e. ǫ. It is interesting to expand
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the above expression at α → 0 in order to check if there is an Einstein theory limit for the

above vacua or not

16πG6Λeff = −10

α
(1 + ǫ) − 20ǫa2 + O(α) . (2.11)

Hence, we distinguish the following three cases

• For ǫ = +1, the solution, as can be seen by (2.11), does not have an Einstein theory

limit as α → 0, although there may be a relevant dS6 or AdS6 Einstein solution

mimicking (2.6). We name this branch the Gauss-Bonnet branch. The solution

asymptotes AdS6 space for α > 0 and to dS6 space for α < 0. Unlike what is argued

in [26] this branch is not, at least, classically unstable for the reasons put forward

by [29] (for a full study of this see [30]).

• For ǫ = −1, the solution has an Einstein theory limit (as α → 0) as seen from (2.11)

and therefore we call this branch the Einstein branch. The solution asymptotes

AdS6 space for α > 0, −1/(4α) < a2 < 0 or α < 0, a2 < 0, to dS6 space for α < 0,

0 < a2 < 1/(4|α|) or α > 0, a2 > 0 and to M6 for a2 = 0.

• For the special BI case 1 + 4αa2 = 0, as we can see from (2.10) we obtain an dS6

or AdS6 asymptotic solution which does not have an Einstein theory limit and no

possible flat vacuum. However this is the only case that we have a unique vacuum.

Let us now proceed into analysing the solution at hand (2.6) (we will mostly follow [31]).

For the above metric solution (2.6), there are two possible singularities in the curvature

tensor, the usual r = 0, and also a branch cut singularity at the (maximal) zero of the

square root

r5
s =

4αǫµ

1 + 4αa2
. (2.12)

Whenever rs is real and positive, this is the singular end of spacetime (2.6). For the BI

case 1 + 4αa2 = 0 there is no such singularity.

We will have a black hole solution if and only if there exists r = rh such that V (rh) = 0

and rh > rmax, where rmax = max{0, rs}. Indeed the usual Kruskal extension

dv± = dt ± dr

V (r)
, (2.13)

gives that (v+, r) and (v−, r) constitute a regular chart across the future and past horizons

of (2.6). It is actually straightforward and rather useful to show the following: r = rh is

an horizon iff,

rh > rmax , (2.14)

ǫ(2ακ + r2
h) ≤ 0 , (2.15)

pα(rh) = 0 with pα(x) = −a2x5 + κx3 + ακ2x + ǫµ . (2.16)

In addition, one should make sure that the sign of V on each side of the roots of the above

polynomial is such that (2.6) describes a black hole. The sign of pα and V are not in

general the same, depending on the signs of ǫ and α.
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Therefore for ǫ = +1 we have r2
h ≤ −2ακ, i.e. , the event horizon is bounded from

above. This means that for κ = 0 there are no black hole solutions in this branch. Also note

that pα=0(x) is just the usual polynomial for a Einstein black hole, and hence, α couples

only to the horizon curvature κ. Therefore, for ǫ = −1 and κ = 0 the horizon positions

are the same as in the GR solutions. In fact, when ǫ = −1 we have similar structure and

properties of the solutions (2.6) as their Einstein counterparts.

3. Codimension-2 braneworlds

A standard procedure for Einstein theory to generate brane world solutions from black

hole solutions [32, 33] is to perform a double Wick rotation for a black hole solution. The

same will be valid for (2.1) and the black hole solution (2.6) at hand. We set t → iθ and in

addition make a further Wick rotation x0 → it in the metric hµν (2.5) so that it becomes

of Lorentzian signature

hµν =
ηµν

(

1 + κ
4ηµνxµxν

)2 . (3.1)

Then, the maximally symmetric spacetime sections correspond to four-dimensional

Minkowski, AdS4 and dS4 for κ = 0,−1, 1 respectively with curvature R[h] = 12κ. The

solutions are now of manifest axial symmetry with ∂θ as the angular Killing vector,

ds2 = V (r)dθ2 +
dr2

V (r)
+ r2hµνdxµdxν . (3.2)

The six-dimensional spacetime has the correct symmetries to describe a maximally sym-

metric four-dimensional brane world. The staticity theorem invoked for black hole space-

times [24] tells us now that axial symmetry comes for free and need not be imposed for

resolving the system of equations. The solutions (3.2) are therefore the general solutions

describing maximally symmetric branes, something that has been overlooked up to now

even in the case of Einstein theory. It is interesting to note that in the case of Einstein the-

ory in four dimensions, we obtain in this way the general maximally symmetric gravitating

cosmic strings, which can differ drastically from their flat counterparts (see in particular,

the cosmic string solutions in AdS presented in [34]).

The positions of the horizons rh will be the endpoints of the internal space and the

solutions will have meaning if we keep the spacelike regions of the previous black hole

solutions, i.e. the ones with V (r) > 0. Let us suppose that we keep the space-like region

between two horizons r− and r+, with r− < r+ [the subsequent discussion applies of course

also in the case that we have only one horizon and we keep the side which is spacelike]. At

these endpoints of spacetime, which are also the fixed points of the axial symmetry, one can

in general put branes of dimension four, in other words 3-branes. Since the brane solutions

we have found are maximally symmetric, the brane can only carry some two-dimensional

Dirac charge, i.e. pure tension. Taking xµ = const. and expanding around the zeros of V

we get,

ds2 ≈
(

1

4
V ′2

r±

)

ρ2
±dθ2 + dρ2

± , (3.3)
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with the Gaussian Normal radial coordinate

ρ± =

√

4(r − r±)

V ′
r±

, (3.4)

which is well defined in all cases with V ′
r± 6= 0. The case of V ′

r± = 0 needs special attention

as we will see later (section 4.1.3 and section 4.2.3). In this coordinate system, the brane

energy momentum tensor is T brane
µν = Sµνδ

(2) = Sµν
δ(ρ±)
2πρ±

, with Sν
µ = −T±δν

µ, where T± are

the brane tensions. If the angular coordinate has periodicity θ ∈ [0, 2πc), then the deficit

angles which are induced at the two brane positions are δ± = 2π(1 − β±) with

β± =
1

2
|V ′

±|c . (3.5)

The angular periodicity c is an arbitrary topological integration constant of the solution

and can be varied to generate physically different brane world solutions. Let us note here,

that in a compact model, we can always use the freedom of choosing c to set the deficit

angles of one of the branes to zero, e.g. β− = 1, thus, obtaining a ”teardrop” compact

space with only one brane of β+ 6= 1.

From the Einstein equations (2.3) supplemented by the brane tension terms, one can

separate the distributional Dirac parts and write down induced Einstein equations for the

branes. These brane junction conditions are [22, 23]

2π(1 − β±)
(

−γµν + 4α̂Gind
µν

)

= 8πG6Sµν , (3.6)

where γ±
µν = r2

±hµν is the induced metric on the branes with curvature R[γ±] = 12κ/r2
± ≡

12κH2
±, and Gind

µν = −3κH2
±γµν is the induced Einstein tensor. It is important to emphasize

here that r2
± depends on the geometric parameters of the bulk solution (3.2) namely the

mass µ, and the bare parameters α and a2. It is also effectively the warp factor of the

brane. The induced Newton’s constant on the two branes can be determined from (3.6) to

be

G±
4 =

3G6

4πα(1 − β±)
. (3.7)

Note that in order to have positive induced Newton’s constant, we should have have angle

deficit (β± < 1) for α > 0 and angle excess (β± > 1) for α < 0. The two dimensional

warped space in the coordinates θ and r has in the latter case the shape of a pumpkin

whereas in the former case the shape of a football (rugby ball to be more precise). The

important information coming from (3.6) is that the parameters α and β invoke the relation

and the possible hierarchy between the bulk and four-dimensional scales.

Substituting the Gind
µν back in (3.6) we find a relation between the Hubble parameters

on the branes and the action parameters

2π(1 − β±)

(

1

2α
+ κH2

±

)

=
4πG6

α
T± , (3.8)

which can be further simplified, if we substitute the deficit angle from (3.7) and solve for

H2
±

κH2
± = − 1

2α
+

8πG±
4

3
T± . (3.9)
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The above equation is very important and relates the curvature on the brane H2
± to its

sources, namely the brane tension and the Gauss-Bonnet coupling. We see that the junction

conditions tell us that the effective expansion H± is in one part due to the Gauss-Bonnet

induced cosmological term and in another part due to the vacuum energy of the brane.

Since H± = 1/r±, we remind the reader that the Hubble parameter can be expressed as

a function of parameters appearing in the soliton potential (2.7). Then, according to the

specific explicit solution, the Hubble parameter is constrained and the above relation can

give bounds on the two previously mentioned sources of curvature.

A final comment before discussing the various brane world solutions has to do with

the induced effective Newton’s constant G±
4 appearing in (3.7). In a usual Kaluza-Klein

dimensional reduction, the effective Newton’s constant is obtained after substitution of the

graviton’s zero mode wavefunction in the action and the integration of the extra dimensions.

This integration, actually, defines a relation between the effective Newton’s constant on

the brane, the higher dimensional Newton’s constant and the volume of the internal space

(see appendix C for the volume calculation for the general brane world models that we

will discuss). However, because of the presence of the branes and the Gauss-Bonnet bulk

dynamics, the graviton dynamics, as perceived on the brane, have peculiarities and four

dimensional dynamics with an induced Newton’s constant G±
4 can be operative, even for

internal spaces of infinite volume [8]. This is the interpretation one should give to the

effective G±
4 appearing in (3.7) which can be different from the Newton’s constant obtained

via the volume calculation in appendix C. For a finite volume element the actual Newton’s

constant perceived by the brane observer depends on the scale on which we probe gravity

on the brane. This is analogous to what happens for the case of the DGP model [8] when

we embed it in a Randall-Sundrum setup.

4. Braneworld solutions

In this section, we will analyze some particular cases of brane-world solutions, keeping only

some of the parameters in the potential (2.7) each time, which give some interesting brane

world examples. In each subcase, we will present the important features introducing the

fewest parameters possible. What will interest us in particular are the zeros of V which will

correspond to possible brane locations. We will continue to refer to roots of V as horizons

although this term is strictly speaking correct only for the black hole solutions (2.6).

4.1 Zero bare cosmological constant

Let us first choose zero bare cosmological constant a2 = 0. Then in all cases of this class,

the horizon position is given by the solutions of the algebraic equation

x3 + Ax + M = 0 . (4.1)

The roots of the above equation are analyzed in appendix B. In the present section, we will

in addition apply the constraints (2.14)–(2.16) and the requirement to be in a spacelike

region with V > 0, in order to find all the possible vacua.

– 9 –



J
H
E
P
0
7
(
2
0
0
8
)
0
6
2

r2
h

µ

r2
−

r2
+

µc0

|α|
3

|α|

Figure 1: The horizon positions r
−

and r+ as a function of the black hole mass µ for the Gauss-

Bonnet branch ǫ = +1 and for α < 0, where the vacua are dS4. For µ = µc we obtain the degenerate

horizon case.

r2
h r2

h

µµ

µs00

2|α|
α > 0 α < 0

Figure 2: The horizon position rh as a function of the black hole mass µ for the Einstein branch

ǫ = −1, where the vacua are dS4. The point µ = µs corresponds to a singularity rs and is excluded.

Firstly, it is evident that for a2 = 0 there are no κ = 0 flat vacua since the polyno-

mial (2.16) has no roots2. The other cases depend on the branch and the four-dimensional

curvature κ.

4.1.1 The dS4 vacua

Vacua with κ = +1, which are dS4, exist both in the Gauss-Bonnet and the Einstein

branches. As we will see, the Gauss-Bonnet branch vacua are compact with respect to the

(r, θ) sections, while the Einstein branch vacua are non-compact.

For ǫ = +1, the only solution satisfying all the above requirements is for α < 0 and

0 < µ < µc ≡ 2|α|3/2/(3
√

3). Then we have a double root structure, which means that

the corresponding brane world solution is of compact (r, θ) sections. It is important to

note that in this case the horizon positions are bounded from above r− ≤
√

|α|/3 and
√

|α|/3 ≤ r+ ≤
√

|α|, so the corresponding Hubble parameters H± = 1/r± are going to

be bounded from below. When in particular µ = µc, the two roots become degenerate

and V ′
r± = 0. The solution deserves special attention and will be discussed later on.

The plot of the horizon (or brane) positions as a function of µ is given in figure 1. It

is important to stress that the relevant black hole solution corresponding to this soliton,

2This is true for solutions of the specific ansatz (3.2), which does not include the unwarped flat case. As

we will see in section 4.1.5, one unwarped flat vacuum for a2 = 0 exists.
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3
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Figure 3: The horizon position rh as a function of the black hole mass µ for the Gauss-Bonnet

branch ǫ = +1 and for α > 0, where the vacua are AdS4.

has the characteristics, of a de-Sitter-Schwarzschild like black hole studied in [31]. Note

that the bigger the α the smaller the effective cosmological constant. Here we have a pure

Gauss-Bonnet soliton (or black hole) in the sense that the α → 0 limit is singular.

For ǫ = −1, i.e. in the Einstein branch, we have two classes of solutions. The first

class is for α > 0 and µ > 0. The single horizon of that case can take all positive values.

The second class is for α < 0 and µ > µs ≡
√

2|α|3/2. In this case the horizon position is

bounded from below as rh >
√

2|α|. Furthermore, in the latter case the singularity (2.12)

exists and is hidden behind the horizon. In the limit µ → µs, we have rh → rs and the

brane position becomes singular. We should therefore exclude the µ = µs point from the

physical parameter space. In both cases, the brane Hubble parameter can be as small as

desired. The plots of the horizon position as a function of µ in the above cases is given

in figure 2. It is interesting to note that both cases here correspond to a Gauss-Bonnet

corrected six dimensional Schwarzschild black hole solution with α > 0 or α < 0.

4.1.2 The AdS4 vacua

Vacua with κ = −1, which are AdS4, exist only in the Gauss-Bonnet branch. In the

Einstein branch, for all the cases satisfying the constraint (2.15), the region shielded by

the horizon is timelike and therefore not suitable for our compactification.

In the Gauss-Bonnet branch ǫ = +1, we have only non-compact brane world models,

all of them for α > 0. The solutions satisfy the criteria (2.14)–(2.16) for −µc ≤ µ ≤ µb ≡
5
√

6α3/2/9. The singularity (2.12) exists for 0 < µ ≤ µb but is always hidden behind the

horizon. The plots of the horizon position as a function of µ in the above cases is given in

figure 3.

4.1.3 The Nariai dS4 vacuum

The degenerate case for κ = +1 in the Gauss-Bonnet branch ǫ = +1 deserves special

consideration. This happens when the mass parameter reaches its maximal value µ → µc

and so the two horizons become one, r− → r+ →
√

|α|/3. The internal space then appears

to collapse, however one should look as for the Nariai metric to a different coordinate

system [39]. So, setting ξ ≡ r−/r+, we make the coordinate transformation that consists
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of an affine transformation

r =
r+

2
[(1 − ξ)R + 1 + ξ] , (4.2)

θ =
2r+

(1 − ξ)
Θ . (4.3)

The degenerate case corresponds to the limit ξ → 1 and as can be seen from (3.2), it

is the limit that the four-dimensional part of the metric is rendered unwarped. In these

coordinates R ∈ [−1, 1] and Θ ∈ [0, 2πC) with

c =
2r+

(1 − ξ)
C . (4.4)

The affine transformation blows up a point of the coordinate system (r, θ) to a well behaved

internal space in the (R,Θ) coordinates. Let us now define the modified potential

f =
4V

(1 − ξ)2
, (4.5)

with the parameters µ and |α| as functions of r+ and ξ given by

µ = r3
+ξ(1 + ξ) , |α| = r2

+

1 − ξ3

1 − ξ
. (4.6)

Then, substituting everything in the metric (3.2) we obtain the blown up metric

ds2 = r2
+

(

fdΘ2 +
dR2

f
+

r2

r2
+

hµνdxµdxν

)

. (4.7)

The Nariai limit ξ → 1 gives a non-singular limit for the modified potential f → 3
5 (1−R2).

Therefore, we obtain a non-vanishing internal space

ds2 =

( |α|
3

)

[

3

5
(1 − R2)dΘ2 +

dR2

3
5(1 − R2)

+ hµνdxµdxν

]

. (4.8)

Note that, after this coordinate transformation, the deficit angle from (3.5) can be

expressed as a function of the modified potential as

β+ = β− =
1

2
|∂Rf |C =

3

5
C . (4.9)

Thus, in this limit the deficit angle is independent of α and depends only on the periodicity

C of the angular coordinate.

4.1.4 Zero black hole mass µ = 0

Let us now suppose that also the black hole mass vanishes µ = 0. Then, the potential has

the simple cosmological form

V (r) = κ +
r2

2α
(1 + ǫ) , (4.10)
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from where we can see that the Einstein branch ǫ = −1 can only give the trivial flat six-

dimensional solution, for κ = +1. The Gauss-Bonnet branch ǫ = +1 on the other hand

has non-trivial solutions. The flat κ = 0 case is excluded since it has no horizon, but there

are AdS4 and dS4 solutions. Firstly, the κ = −1 case can have brane world solutions as

long as α > 0. Then the spacelike region that we use for the internal space is non-compact.

This case corresponds to the point of figure 3 where the curve intersects the µ = 0 axis.

On the other hand, for the κ = +1 vacua we can have an horizon for α < 0 and

obtain a compact brane world model which is part of a six dimensional de-Sitter space.

This case corresponds to the point of figure 1 where the upper curve of r+ intersects the

µ = 0 axis. Furthermore, since the space has no singularity at r = 0, we can extend the

radial coordinate to r < 0 and consider the region of −
√

|α| ≤ r ≤
√

|α|. The internal

space is symmetric around r = 0, thus we have Z2 symmetry around the equator of the

internal space. The reintroduction of a black hole mass µ 6= 0 breaks this symmetry since

it introduces an r = 0 singularity.

4.1.5 Flat vacuum

As noted before, the black hole ansatz (3.2) does not admit flat vacua for a2 = 0. However,

this ansatz, as we noticed also in the Nariai vacuum, has limitations, since it describes only

warped four-dimensional metrics. Looking for unwarped solutions, it is easy to see that

the following flat vacuum is a trivial solution of the equations of motion (2.3)

ds2 = ηµνdxµdxν + dρ2 + ρ2dθ2 , (4.11)

where θ ∈ [0, 2πc). It is non-compact and exists for any sign of α. The equa-

tions (3.7), (3.8), (3.9) continue to hold for κ = 0. To compactify such flat vacua, a

gauge field flux has to be added along the lines of appendix A.

4.2 Non-zero bulk cosmological constant

Let us now switch on the bulk cosmological constant, i.e. a2 6= 0. The polynomial (2.16)

is more complicated to solve, therefore we will study some special cases and focus on as

few parameters as possible. Namely, the case with zero black hole mass µ = 0 and also

the point 1 + 4αa2 = 0 in parameter space where the theory can be written in a BI form.

Finally, we will provide all the flat (κ = 0) vacua.

4.2.1 Zero black hole mass µ = 0

If the black hole mass vanishes µ = 0, the potential has the simple cosmological form

V (r) = κ +
r2

2α
[1 + ǫ

√

1 + 4αa2] . (4.12)

It is obvious that the only brane world solutions that we can obtain in the present case are

the curved ones κ = ±1.

Let us first discuss the dS4 (κ = +1) solutions. For α > 0, we see from (2.15) that

only the Einstein branch ǫ = −1 has a solution with a horizon. Furthermore, in this case,

in order to have r2
h > 0, the bulk cosmological constant should be positive, i.e. a2 > 0.
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r2
h r2

h

a2a2

1/(4|α|) 00

2|α|

α < 0

ǫ = +1

ǫ = −1
α > 0

ǫ = −1

Figure 4: The horizon position rh as a function of the bulk cosmological constant a2 for the dS4

vacua with µ = 0. The solution on the left is for α < 0, where the Einstein and Gauss Bonnet

branches meet at the BI point, represented by dot. The solution on the right is for α > 0.

r2
h r2

h

µµ

00

2α

κ = +1 κ = −1

Figure 5: The horizon position rh as a function of the black hole mass µ for the Born-Infeld case

E = −1 and for α > 0. The left graph is for dS4 vacua and the right for AdS4 vacua.

For α < 0 we can have solutions both in the Einstein and the Gauss-Bonnet branch. In

the Einstein branch ǫ = −1 the horizon is r2
h > 0 for positive bulk cosmological constant

with 0 < a2 < 1/(4|α|). On the other hand, in the Gauss-Bonnet branch ǫ = +1 there

are solutions for any a2 < 1/(4|α|). At the BI limit a2 = 1/(4|α|) the two branches merge

to a unique dS4 solution. In all the above cases the spacelike region is for r < rh and the

internal spaces are compact. As in section 4.1.4, we can extend the radial coordinate to

r < 0 and consider the region of −rh ≤ r ≤ rh, since the space has no singularity at r = 0.

The plots of the horizon position as a function of µ in the above cases are given in figure 4.

The AdS4 (κ = −1) solutions are the same as above if we substitute a2 → −a2. Thus,

the curves in figure 4 should be the mirrors of the κ = 1 case with respect to the a2 = 0

axis. In addition, the spacelike region for these solutions is for r > rh, thus all the AdS4

vacua are for non-compact internal spaces.

4.2.2 The Born-Infeld vacua

For the dS4 and AdS4 vacua, it is easy to see that V is monotonic for E = −1 and has an

extremum at rextr = (|α|µ/4)1/5 if E = +1.

The vacua obtained for 1 + 4αa2 = 0 deserve special attention. As discussed in the

section 2, these vacua do not have an Einstein limit. In a certain way they correspond to the

strongly coupled limit of the Gauss-Bonnet term in the action (2.1), since at the linearized

level the combination (1+ 4αa2) multiplies the perturbation operator. Furthermore, as we
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saw in the previous section, for these vacua the branches for ǫ = +1, ǫ = −1 merge. Let

us now switch on a mass parameter µ > 0 in the potential and write it as

V (r) = κ +
r2

2α
+

M√
r

, (4.13)

where the integration constant M ≡ E
√

4|α|µ

2α replaces µ. The potential (4.13) is similar

to an Einstein black hole potential in four dimensions with a cosmological constant, apart

from the fact that the Newtonian potential is now 1/
√

r rather than 1/r! Furthermore,

if we were to compare it with the six dimensional Einstein black hole (1/r3), we see that

gravity in the Born-Infeld case is far weaker as one approaches the singularity.

Keeping this comparison in mind, the flat κ = 0 vacua of this theory, exist for E = −1

and are non-compact. In order for the region r > rh to be spacelike, we need α > 0 and thus

a2 < 0 (similar to a planar AdS black hole). The horizon position is simply rh = (4αµ)1/5.

We will see more of the flat vacua in the last subsection.

For the case E = −1, the potential has only one root. In order for the region r > rh

to be spacelike, we need to have α > 0. Then both cases κ = ±1 are possible. For the

AdS4 (κ = −1) vacua, the horizon distance is bounded from below r2
h ≥ 2α, while for the

dS4 (κ = +1) vacua, the horizon is not bounded. The plot of the horizon positions as a

function of µ is given in figure 5. The situation is similar to an AdS Schwarzschild black

hole with planar or spherical horizon.

In the E = +1, the potential has either none or two roots. In order for the potential

to acquire two roots the black hole mass should be in the range µ > µN ≡ 4(2/5)5/2 |α|3/2.

Then we can distinguish two possible cases, one with α > 0 and κ = −1, and a second

with α < 0 and κ = +1. For the AdS4 (κ = −1) vacua, the spacelike region is for r > r+

and thus the space is non-compact. The horizon is bounded as 2α/5 < r2
+ < 2α. For the

dS4 (κ = +1) vacua, the spacelike region is for r− < r < r+ and thus the space is compact.

The outer horizon is bounded as 2α/5 < r2
+ < 2α and the inner as 0 < r2

− < 2α/5. When

µ = µN the two roots become degenerate and V ′
r± = 0. This solution will be discussed

in the following section. The plot of the horizon positions as a function of µ is given in

figure 6.

4.2.3 The Born-Infeld Nariai vacuum

The degenerate case of the Born-Infeld vacuum for κ = +1, E = +1 and α < 0 deserves

special consideration. This happens when µ → µN and so r− → r+ →
√

2|α|/5. The

internal space then appears to collapse, however one should look as for the Nariai metric

in a different coordinate system, as we saw in section 4.1.3. Repeating the same procedure

as before and expressing the parameters µ and |α| as functions of r+ and ξ

µ =
r3
+

2

ξ(1 − ξ2)2

(1 − ξ1/2)(1 − ξ5/2)
, |α| =

r2
+

2

1 − ξ5/2

1 − ξ1/2
, (4.14)
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Figure 6: The horizon positions r
−

and r+ as a function of the black hole mass µ for the Born-

Infeld case E = +1 and for α < 0, where the vacua are dS4. For µ = µN we obtain the degenerate

horizon case. The outer horizon r+ is also the horizon that we obtain for the case E = +1 and for

α > 0, where the vacua are AdS4.

we find that the Nariai limit ξ → 1 gives a non-singular limit for the modified potential

f → 1
2(1 − R2). Therefore, we obtain a non-vanishing internal space

ds2 =

(

2|α|
5

)

[

1

2
(1 − R2)dΘ2 +

dR2

1
2(1 − R2)

+ hµνdxµdxν

]

. (4.15)

Furthermore, the deficit angle from (3.5) can be expressed as a function of the modified

potential as

β+ = β− =
1

2
|∂Rf |C =

1

2
C . (4.16)

4.2.4 Flat vacua

Let us now study the flat (κ = 0) vacua that exist in the a2 6= 0 case. We have found

previously a flat vacuum in the special BI case. More generally, we know from (2.15) that

flat vacua can exist only for ǫ = −1. The horizon position is at r5
h = −µ/a2 and we can

see from the potential asymptotics that the region r > rh will be spacelike in two cases:

(i) α < 0 and a2 < 0 and (ii) α > 0 and −1/(4α) < a2 < 0. Thus, for both cases we should

have µ > 0. In case (i) there is a branch cut singularity rs given in (2.12) hidden always

beyond the horizon. In case (ii) there is not such rs.

In all these cases, the flat vacua have non-compact internal spaces and are warped.

The latter property is in contrast to the flat vacuum that exists when a2 = 0. Thus,

we see that the introduction of a bulk cosmological constant can be compensated by the

black hole mass µ and warping of the four-dimensional space, giving again vacua of zero

four-dimensional curvature. As noted before, to compactify such flat vacua, a gauge field

flux has to be added along the lines of appendix A.

5. Self-properties of the solutions

Let us now discuss the physical consequences of the above solutions. In particular, we

wish to see whether we can obtain codimension-2 braneworlds exhibiting self-accelerating
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or self-tuning behaviour. For the former, we seek dS4 models where the acceleration is

mainly of geometrical origin rather than due to the vacuum energy or tension T of the

branes. For the latter, we seek braneworld solutions (de Sitter or flat) where the effective

Hubble parameter of the brane is not related to the brane vacuum energy T and the tension

can be arbitrary large even for small observable Hubble curvature. Here it is important to

emphasize, that the Gauss-Bonnet term plays the role of an induced gravity term on the

brane [23] according to (3.6). Therefore even if the internal space is not compact we expect

that gravity will be four dimensional up to some distance scale. In fact, we would expect,

and this turns out to be true, that self-acceleration will hold for warped but uncompactified

codimension-2 setups as for the case of codimension-1. Secondly, taking into account that

the effective curvature of the brane is given by

κH2
± = − 1

2α
+

8πG±
4

3
T± , (5.1)

i.e. as the sum of a geometrical term and a brane tension term, the self-accelerating and

the self-tuning cases are, in some respect, in contrast to each other.

Let us first study self-acceleration. The key relation is (5.1). For this case, one should

firstly have a non-zero positive geometrical contribution to the curvature, i.e. α < 0 com-

ing from the Gauss-Bonnet term in the action (2.1). Secondly, this contribution should

be dominant in comparison to the brane tension contribution. Note that in order to be

in accord with phenomenology from supernovae data [1] and since H0 ∼ 10−34eV , the

Gauss-Bonnet coupling should be roughly of the order α ∼ 10120M−2
Pl . In this case, the

Gauss-Bonnet term in the action is dominant in comparison to the Einstein-Hilbert term.

Furthermore, for this limit, even the compact models will have enormous volumes of cos-

mological size, and therefore will be comparable to certain aspects of infinite volume ones

(see appendix C for the calculation of the volumes of the various models).

It is useful to define a self-acceleration index as the fraction of the geometrical accel-

eration to the curvature

s =
1/(2|α|)

H2
=

r2
h

2|α| . (5.2)

When 0 < s < 1 we have T > 0 assuming G4 > 0. On the other hand, if s > 1, we

have T < 0 with the limit |T | → 3/(16πG4 |α|) giving s → ∞. We can argue that self-

acceleration exists whenever 1/2 . s . 3/2, with the strict self-accelerating limit being

s → 1 for T = 0.

The index (5.2) depends on the specific bulk solutions that we have. Going through

the dS4 vacua that we discussed in the previous section, we should restrict ourselves to the

ones with α < 0. Then the self-acceleration index for the various cases is listed as following

1. For a2 = 0, ǫ = +1, α < 0, we have two horizons and the index for the two branes

varies as 0 < s− < 1/6 and 1/6 < s+ < 1/2. Thus, for this case (figure 1) we have

no strict self-accelerating limit. The Nariai limit case gives s = 1/6.

2. For a2 = 0, ǫ = −1, α < 0, we have one horizon and the index is s > 1 (figure 2).

Here we have a strict self-accelerating limit when µ → µs, however, at µ = µs the

model is singular.
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3. For a2 = 0, ǫ = +1, µ = 0, α < 0, we have the compact Z2-symmetric model with

s = 1/2.

4. For a2 6= 0, ǫ = ±1, µ = 0, α < 0, we have the compact Z2-symmetric model

(figure 4). The index for ǫ = −1 is s > 1 and for ǫ = +1 varies as 0 < s < 1. The

strict self-accelerating limit happens for the BI case and can be approached by either

branch ǫ = 1 and ǫ = −1. One can argue that the BI limit is natural in the sense

that the theory becomes more symmetric at that point.

5. For the BI case with E = +1, µ 6= 0, α < 0, we have two horizons (figure 6) and

the index for the two branes varies as 0 < s− < 1/5 and 1/5 < s+ < 1. The strict

self-accelerating limit happens for the µ = 0 case as mentioned above.

From the above we see that the two physically interesting cases where the late acceler-

ation of our Universe can be of purely geometrical origin, are cases 2 and 4. In case 2 the

strict s = 1 limit can only be reached asymptotically in order not to hit the singularity at

µ = µs.

Actually, the first two cases present some similarities and one important difference with

the codimension-1 DGP [8], which is worth noting. In fact, we see that case 2 corresponds

to the self-accelerating branch of DGP [14] and case 1 to that of the normal branch with

dS4 branes [11]. A first similarity is the fact that we obtain branching, which now is in-

between the Gauss-Bonnet branch and the Einstein branch. Secondly, for case 1, as for the

normal branch with dS4 branes, we expect a normalisable spin-2 graviton since the relevant

volume element is finite. It is an intriguing difference, however, that the codimension-1

unstable or self-accelerating branch corresponds to the Einstein branch here and not the

Gauss-Bonnet one.

In case 4, we note that the limit s = 1 is regular and we see that around a2 = 1/(2|α|),
self-acceleration is possible for both branches. Here, the similarity with codimension-1

resides that in that the case of T = 0 tension we have enhanced symmetry [10, 11], as one

also expects for the Born-Infeld case in codimension-2.

Let us now discuss the cases which have to do with self-tuning. The self-tuning idea

aims to allow for vacua where their effective cosmological constant is independent from (or

at least not strongly dependent on) the vacuum energy of the brane, without fine-tuning.

In the toy-model we are presenting here, vacuum energy is represented by the brane tension

T± whereas the effective cosmological constant is represented by κH±. For self-tuning to

operate, there should be enough integration constants allowed to be adjusted when we

vary one brane tension, with the crucial demand of keeping the curvature of that brane

constant. In the solutions that we have discussed, the free parameters are the angular

coordinate range c and the black hole mass µ. On the other hand, the action parameters

are the Gauss-Bonnet coupling α, the bulk cosmological constant a2 and the brane tensions

T±. If we vary for instance T+ we do not wish α, a2, T−, H+ to change, but only possibly

c and µ. We will be obviously interested in the dS4 and the flat vacua to test if such a

self-tuning can work.
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For the dS4 vacua, the Hubble parameter on the brane depends on the black hole mass

µ and the action parameters α and a2. Since we require that the action parameters are

not tuned, if we fix the curvature H2 this is equivalent to fixing the black hole mass µ. In

the cases where we have more than one brane with different Hubble parameters H±, both

of the latter are given functions of α, a2 and µ. Thus, fixing µ from the curvature of the

one brane H+, fixes also the curvature of the second brane H−. Then from the relation

2π(1 − β±)

(

1

2α
+ κH2

±

)

=
4πG6

α
T± , (5.3)

we see that, if we change T+, we can keep the curvature H+ constant by changing c.

But since H− is fixed, we have to change also T−. This results to an interbrane fine-

tuning. Hence, the only way to obtain self-tuning is when the second brane is absent, or

in Z2-symmetric models where only one of the above relations survive.

These selftuning cases, however, are not all theoretically satisfying if we look at the

orders of magnitude of the various dimensionful quantities in (5.1). Although we have no

idea of the brane tension value today, it would be logical that, if no accurate cancellations

happen during phase transitions in the history of the Universe, its natural order of mag-

nitude is T ∼ M4
Pl. On the other hand we know that the the present value of the Hubble

constant is approximately H0 ∼ 10−60MPl. In order that (5.1) can then be satisfied, to-

day’s curvature should be negligible in comparison with |α|−1. In other words, we should

find models which allow for |α|H2 ≪ 1 and approximately

8πG4

3
T ≈ 1

2α
. (5.4)

The above relation should not be viewed as a fine tuning between the action parameters α

and T , since G4 scales as 1
α (3.7) and can vary in time when the vacuum energy changes,

in accordance with the remarks of [35]. The constraints on the time variation of Newton’s

constant come rather late in the history of the Universe, certainly after the QCD phase

transition. Therefore, the relation (5.4) is providing the angle deficit/excess parameter β,

given a Gauss-Bonnet coupling α, which needs not to be unnatural as in the self-accelerating

case. Furthermore, the relation (5.4) is exact for the case of flat κ = 0 vacua.

From the models that we have discussed, let us see the cases that give rise to such

theoretically viable self-tuning

• For a2 = 0, ǫ = −1, and for both α > 0 and α < 0, we have the non-compact vacua

with |α|H2 ≪ 1 for µ|α|−3/2 ≫ 1 (see figure 2).

• For a2 6= 0, ǫ = −1, µ = 0, α < 0, we have Z2-symmetric vacua with |α|H2 ≪ 1 for

|α|a2 ≪ 1 (see figure 4).

• For a2 6= 0, ǫ = −1, µ = 0, α > 0, we have non-compact vacua with αH2 ≪ 1 for

αa2 ≪ 1 (see figure 4).

• For the BI case with E = −1, α > 0, we have non-compact with αH2 ≪ 1 for

µα−3/2 ≫ 1 (see figure 5).
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• All the flat non-compact vacua, for both α > 0 and α < 0 are self-tuning in the exact

sense.

Here we should note once more that the above (exact or approximate) self-tuning solu-

tions do not constitute a resolution, but rather a potential amelioration, of the cosmological

constant problem. We have found vacua where the brane curvature is independent of the

brane vacuum energy and furthermore the these two energy scales can be well separated.

However, the important question, for which the self-tuning mechanism cannot give a simple

answer, is if the dynamical variation of the vacuum energy results in remaining in these

vacua. In some sense, the term self-tuning itself is deceiving since the existence of these

vacua does not guarantee that there are some attractor dynamics which tune the system

towards them. Nevertheless, the very existence of them is important, since at least at the

level of non-dynamical solutions, dissociating the brane curvature from its vacuum energy

is a rather unique situation. Moreover, we saw that most of these vacua are non-compact,

but, as we will explain in the last section, gravity is quasi-localised and thus effectively

four dimensional up to some cross-over scale.

It is evident that the vacua with the above self-tuning properties are different from the

ones with the self-accelerating properties corresponding in particular to a totally different

bare parameter α. This is true as long as we want self-acceleration at a very low energy

scale. If, for example, we want to explain inflation theory geometrically, as in [36], then

the self-accelerating (inflationary) vacua can be deformed to self-tuning ones by letting

the integration constant µ run. A nice toy model scenario for this is pictured in figure 2

if we assume that µ is an increasing function of proper cosmological time. One starts at

the big-bang singularity which corresponds to a 6 dimensional bulk naked singularity at

µ = µs. At early time we have µ ' µs and the inflationary expansion is, H2
inf ∼ 1/(2|α|).

At late time the late expansion is related to the large mass of the soliton whereas the

vacuum energy is of the order of 1/(G4|α|) which is much larger than the current Universe

curvature H2
0M2

Pl.

Before we close off this section, it is worth pointing out that no self-tuning cases are

possible for the Gauss-Bonnet branch. Furthermore, the only finite volume self-tuning case

that we encountered is possible for a de Sitter braneworld.

6. The Gauss-Bonnet instantons

In our previous analysis, we have found several brane world vacua of finite volume. These

solutions are of special interest because they can give rise to gravitational instantons. We

saw how they all have the feature that the four dimensional space is dS4. Wick rotating to

a Euclidean metric hµν as in (2.5) with κ = +1 and keeping the Euclidean internal space,

all the coordinates are spacelike and the solutions describe a Riemannian manifold with

conical singularities. Particularly important are the instantons which are regular, in other

worlds those having no conical singularities (see also [37, 38]). We can divide these vacua

into two classes according to their topology.

The first class of instantons are the ones for vanishing black hole mass µ = 0, where

there is no singularity at r = 0 and the space is Z2-symmetric. These instantons are given
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by

ds2 =

(

1 − r2

r2
h(α, a2)

)

dθ2 +
dr2

(

1 − r2

r2
h
(α,a2)

) + r2hµνdxµdxν , (6.1)

with r2
h = −2α/(1 + ǫ

√
1 + 4αa2) and are topologically S6. In order for these instantons

to be regular, one should have β = 1, which from (3.5) gives c = rh for the periodicity of

the θ-coordinate. These instantons have an Einstein theory limit only in the case ǫ = −1

and 1 + 4αa2 6= 0.

The second class of instantons are the ones of the Nariai limits of vacua with non-

vanishing black hole mass found in section 4.1.3 and section 4.2.3. These instantons are

given by

ds2 = r2
h(α, a2)

[

ζ(1 − R2)dΘ2 +
dR2

ζ(1 − R2)
+ hµνdxµdxν

]

, (6.2)

where ζ is a numerical factor and rh the degenerate horizon. These instantons, in contrast

with the ones noted before, are topologically S2 ×S4. In order for these to be regular, one

should have β = 1. The deficit angle for the instantons that we have found is given by

β = ζC, thus, regularity of the instantons imposes C = 1/ζ. Let us also note here that

these S2 × S4 instantons for the case a2 6= 0, exist also for the case other that the BI limit

that we have discussed in section 4.2.3. This is why in (6.2) we allowed for a2 dependence

of the degenerate horizon. None of these instantons has an Einstein theory limit.

The above instantons have the physical interpretation of describing probabilities of

nucleation processes [39, 40] between two distinct gravitational backgrounds. In particular,

the probability of nucleation of a pair of Nariai black holes from the pure dS6 backgrounds

of µ = 0, is given by

Γ = η exp[2∆S] , ∆S ≡ SS6 − SS2×S4 , (6.3)

where η is the one loop contribution from the quantum quadratic fields and SS6 and

SS2×S4 are the values of the action for the two instantons that we presented earlier. It is

straightforward to compute the above probability of nucleation for the two simple cases of

a2 = 0 and the BI case a2 = 1/(4|α|). In both cases one obtains

∆S ∝ Vol(S4)

16πG6
α2 > 0 . (6.4)

Since these action differences are positive definite, we deduce that the probability of both

processes is unsuppressed unlike the case of [39]. Therefore, the solitonic vacua (µ 6= 0)

are apparently stable with respect to pure de Sitter vacua in Lovelock theory. This result

certainly deserves further study.

7. Discussion and conclusions

In this paper we studied in some detail codimension-2 braneworlds in the context of Love-

lock gravity. Using a modified version of Birkhoff’s staticity theorem [24, 25], we found

all six dimensional solutions describing a de Sitter, flat or anti de Sitter braneworld of
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codimension 2. First thing we can observe is that, unlike the codimension-1 case where the

Gauss-Bonnet invariant plays a somewhat secondary role, here, in the case of codimension-

2 braneworlds, it can give rise to self-acceleration and certain self-tuning properties which

are not present in the Einstein theory. This is largely due to the fact that codimension-2

junction conditions induce on the brane an Einstein-Hilbert term [22]. It is important to

note that this does not mean that we have ordinary four-dimensional gravity, rather, as

noted in [23], we are in a quite similar situation as for the codimension-1 DGP model [8].

By this, we mean that from some ultraviolet scale up to some infrared scale we expect

gravity to ”look” four-dimensional. A proof of this statement of course requires the full

spectrum of gravitational perturbations for the solutions that we have found.

The important relation we came across is (3.9) which relates the vacuum energy or

tension T of the brane with the Gauss-Bonnet coupling α and the effective cosmological

expansion on the brane H0, which itself is related to the characteristics of the bulk solution:

its mass, bulk cosmological constant (and charge) in particular. The interesting feature we

found here is that the Gauss-Bonnet coupling can give de Sitter branes without vacuum

energy on the brane, purely geometrically. In this sense such de Sitter solutions are self-

accelerating. In order to explain the small cosmological constant we then have to fine-tune

as usual α ∼ H−2
0 .

The second important point is that Gauss-Bonnet coupling α and the topological

parameter β, which is otherwise unconstrained, dictate the cross-over scale between the

four-dimensional Planck scale G4 and the six-dimensional one G6 (3.7). Here, unlike the

five dimensional DGP model, the cross over scale is not necessarily tied up to the self-

acceleration scale. Indeed, the more β is close to 1 (3.7), the more we can dissociate these

scales. In a nutshell, all depends on the gravity phenomenology beyond the cross-over

scale and is dictated by the full graviton propagator on the brane. As we emphasized, the

appearance of the induced Einstein tensor in the codimension-2 junction conditions is not

a proof of an effective four-dimensional gravity or not. It is a definite sign, however, that a

relevant scale will appear in the boundary conditions for the gravitational perturbations.

Although we have not undertook the precise perturbation calculation here, we will comment

on some of its characteristics later on.

The most conservative approach is, as in DGP [14], to introduce a hierarchy of scales

between G6 and G4 so that the cross-over scale is

r2
c =

G6

G4
. (7.1)

Assuming that rc ∼ H−1
0 , this gives a very low higher dimensional Planck scale M6 ≡

G
−1/4
6 ∼ 10−30MPl which in turn dictates that 1 − β ∼ O(1). But, as mentioned above,

one can have rc ≪ H−1
0 by having 1 − β ≈ 0. For the self-tuning vacua, on the other

hand, the natural value of the Gauss-Bonnet coupling is α ∼ M−2
Pl which for the same

cross-over scale (7.1) and rc ∼ H−1
0 gives a huge angle excess 1 − β ∼ 10120. Obviously, in

this case a reasonable hierarchy between H−1
0 and the cross-over scale rc, cannot reduce

significantly the latter huge excess angle. We emphasize, however, that the above orders of

magnitude, should be viewed with caution since the definition of the cross-over scale (7.1)
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should be done in a true cosmological setting with complete knowledge of the modified

FRW equations.

Another important point concerns the fact that the self-accelerating branch of DGP

seems to be embedded in the usual Einstein branch of Lovelock theory and not in the

Gauss-Bonnet branch. Indeed, given the Gauss-Bonnet term in the action and no bare

cosmological constant (a2 = 0) we find two distinct solutions for ǫ = ±1 (2.7): in the

Gauss-Bonnet branch, ǫ = +1, we can have a finite volume soliton solution since then

the Gauss-Bonnet coupling plays the role of a cosmological constant (figure 1) (situation

akin to a Schwarzschild de Sitter black hole [31]). Then, we have a finite volume element

and we expect a normalisable zero mode graviton. We get no self-acceleration. For the

Einstein branch however, ǫ = −1, we have a single brane, infinite volume element and self

acceleration with as small tension as we want (figure 2). The bulk solution corresponds to

a Gauss-Bonnet corrected Schwarzschild black hole. This difference may be interesting in

respect to linear (in)stability and the presence of ghosts of such backgrounds, not only in

the scalar, but also in the spin-2 sector.

Furthermore, in our solutions we see at least two different length scales emerging where

we can probe differing four-dimensional gravity. That of the volume element, which if finite,

would mean that beyond that scale we expect ordinary four-dimensional gravity. Secondly,

that of the cross-over scale where up to that distance gravity seems four-dimensional, as

in the case of the codimension-1 DGP model. Again we emphasize that the cross over

scale and self acceleration scale are here supplemented by an extra topological parameter β

which in a sense tells us how far we are from a Kaluza-Klein setup for the Killing direction

∂θ. Indeed, we see that for β → 0 our codimension-2 space is very much like a lightning

rod [41], where we seemingly have a cascade from a six-dimensional to a five-dimensional

and then a four-dimensional setup (reminiscent of the recent proposal [42]).

What is missing from our analysis is the linear perturbation of these solutions which

will tell us of the stability and the precise gravitational spectrum. This is not a trivial

task, for our metric is not conformally flat. Therefore, apart from the usual complications

of black hole perturbations, one has to add the fact that Lovelock perturbations are going

to be genuinely different from the usual ones for Einstein theory. The reason is simple:

the background Weyl tensor appears in the Lovelock field equations and thus, extra tensor

pieces are bound to appear for tensorial perturbations. Recent work in fact from string

theory [43], in relation to the AdS/CFT correspondence, indicates that there is yet another

scale appearing in the bulk perturbations of (2.6). This extra scale comes from the extra

tensorial pieces ”to be added” to the usual perturbation operator, that dictate that gravity

waves in a planar (κ = 0) black hole background (2.6) can evolve in a differing background

geometry than that of (2.6). This means in particular that the light-cone of the wave fronts

can break causality. We think that this is an intriguing and extremely important issue,

which we hope will be undertaken soon.

In addition, the cosmology of codimension-2 branes is very poorly understood, es-

pecially from the point of view of self-tuning and the issue of vacuum selection. It has

been known that in Einstein gravity the introduction of matter other than tension on

– 23 –



J
H
E
P
0
7
(
2
0
0
8
)
0
6
2

codimension-2 branes introduces singularities3 worse than conical [45] (see, however, the

work of [46] for intersecting brane cosmology in six dimensions). Although, the appearance

of singularities is natural in defects of codimension higher than one [47, 48], one has in

practice to regularise the brane [49, 50] in order to consider some cosmological fluid on

them [51, 52]. Although one expects that brane singularities persist in the Lovelock the-

ory, the fact that there exists an induced Einstein equation on the brane, allows for the

cosmology to be studied without the need of explicit regularisation. We plan to address

the question of cosmology of the present Lovelock models in a different publication [53].
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A. A more general action

In this appendix we will consider a generalization of the model that we discussed in the

main text to a D-dimensional bulk spacetime, where also a gauge field FMN is coupled to

gravity. The action of the system reads

S =

∫

dDx
√−g

[

1

16πGD
(R + α̂LGB) − Λ

]

− 1

4

∫

dDx
√−gF 2 , (A.1)

where GD the D-dimensional Newton’s constant.

It is straightforward to write down the Einstein equations of motion for the above

action. They read

GMN − α̂HMN = 8πGDTMN , (A.2)

with the energy momentum tensor

TMN = −ΛgMN + FMKF K
N − 1

4
F 2gMN . (A.3)

Furthermore, the gauge field equation reads

∂M (
√−gFMN ) = 0 . (A.4)

The static spherically symmetric solutions of the above equations of motion with (D−
2)-dimensional space of maximal symmetry are locally isometric to

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2hµνdxµdxν . (A.5)

3This is a well known fact in four dimensional gravity, called the Israel paradox concerning self-gravitating

cosmic string metrics (see for example [44]).
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The explicit solution of the equations of motion then gives

F =
q

4πrD−2
dt ∧ dr , (A.6)

and for the potential,

V (r) = κ +
r2

2α

[

1 + ǫ

√

1 + 4α

(

a2 − ǫµ

rD−1
− Q2

r2(D−2)

)

]

, (A.7)

and the parameters appearing in the action have been rescaled to,

α = (D − 3)(D − 4)α̂ , 16πGDΛ = (D − 1)(D − 2)a2 (for dSD) . (A.8)

The integration constants are,

Q2 =
GD q2

2π(D − 2)(D − 3)α
, µ =

16πGDM

(D − 2)Σκ
, (A.9)

where q is the charge, M is the AD or ADM mass of the solution and Σκ is the area of the

unit (D−2) maximally symmetric subspace. Finally, ǫ = ±1 which gives rise to 2 branches

of solutions. The convention of the µ sign is chosen so that the gravitational mass is always

µ > 0. As one can easily check by expanding the square root for large distances, the sign

flip in front of µ is necessary to match the Schwarzschild solution behaviour for positive

AD mass. On the other hand, the charge term of the above potential is the opposite of a

charged black hole for ǫ = −1.

B. The general solution of x
3 + Ax + M = 0

To determine the positions of the horizons for the a2 = 0 case, we need the general solutions

of the third order algebraic equation

x3 + Ax + M = 0 , (B.1)

The solutions of the above equation depend on the parameters A, M and in particular on

the discriminant of the system

D =

(

M

2

)2

+

(

A

3

)3

, (B.2)

If D > 0 there is only one real root. If D ≤ 0 there are three real roots, two of which

become degenerate where the inequality saturates. A critical value of M that will be useful

in the subsequent study is

Mc =
2

3
√

3
|A|3 . (B.3)

Since the solutions of the above equation will correspond to horizons, we also need to

look which of these real roots are in addition positive. All permissible cases are listed as

following
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rh

M

√

4|A|
3

√

|A|
√

|A|
3

A < 0
A > 0

0 Mc−Mc

Figure 7: The positive real roots of the equation x3 +Ax+M = 0. The lower curve gives the root

for the A > 0 case and the upper one the root(s) for the A < 0 case. In the interval 0 < M < Mc,

there are two roots r
−

< r+ which become degenerate for M = Mc.

• If A > 0 and M < 0, it is D > 0 and we have the root

rh =

[

−M

2
+

√
D

]1/3

− A

3

[

−M

2
+

√
D

]−1/3

, (B.4)

• If A < 0 and M < −Mc, it is D > 0, but we have one positive root which is given by

the same formula as above (B.4). [It has different value, however, since A < 0.]

• If A < 0 and 0 < M ≤ Mc, it is D ≤ 0 and we have two roots

r+ = 2

√

|A|
3

cos

(

1

3
cos−1

[

− M

Mc

])

, (B.5)

r− =

√

|A|
3

{

− cos

(

1

3
cos−1

[

− M

Mc

])

+
√

3 sin

(

1

3
cos−1

[

− M

Mc

])}

. (B.6)

• If A < 0 and −Mc ≤ M < 0, it is D ≤ 0 but we only have one positive root, given

by (B.5).

The results of the above analysis are summarized in figure 7.

C. Volume calculation

In this appendix, we will calculate the volume of the general brane world models that we

considered in the main text. To do this, we will make the assumption that the zero mode

graviton wavefunction follows the warp factor. In other words, we will assume that the

zero mode is emanating from the metric

ds2 = V (r)dθ2 +
dr2

V (r)
+ r2g(4)

µν (x)dxµdxν , (C.1)
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with the four dimensional metric g
(4)
µν (x) = hµν +Hµν , where Hµν is a perturbation around

the background hµν . To find the volume of the space we should substitute the metric (C.1)

in the action (2.1) and integrate out the internal space. We will define the volume (Vol)

to be given by the coefficient of the four-dimensional curvature term in the action as4

S =
(Vol)

16πG6

∫

d4x
√−g4R4 + . . . , (C.2)

where the dots represent higher order in curvature terms. It is straightforward to compute

that the various quantities of the action (2.1) for the ansatz (C.1) give

√−g6 = r4√−g4 , (C.3)

R6 =
1

r2
R4 + . . . , (C.4)

LGB =
4

r2

(

V

r

)′

R4 + . . . (C.5)

Then the volume is given by the following integral

(Vol) = 2πc

∫

dr r2

[

1 + 4α̂

(

V

r

)′]

. (C.6)

If 1 + 4αa2 6= 0, the above integral gives

(Vol) =
2πc

3

[

r3 − 2α

3

(

4κr +
5µ√

1 + 4αa2

F

r2

)]r+

r−

, (C.7)

where F is the hypergeometric function

F =2F1

(

2

5
,
1

2
,
7

5
;

4αǫµ

(1 + 4αa2)r5

)

. (C.8)

For the special BI case, 1 + 4αa2 = 0, the integral gives instead

(Vol) =
2πc

3

[

13

3
r3 + 4ακr

]r+

r−

. (C.9)

It is straightforward to see that the above formulas give finite (and positive) volume

for the two Nariai cases. To obtain the volume in this case one should move to the (R,Θ)

coordinates and take the limit ξ → 1.
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C. Csáki, J. Erlich and C. Grojean, Gravitational Lorentz violations and adjustment of the

cosmological constant in asymmetrically warped spacetimes, Nucl. Phys. B 604 (2001) 312

[hep-th/0012143];

J.E. Kim, B. Kyae and H.M. Lee, Self-tuning solution of the cosmological constant problem

with antisymmetric tensor field, Nucl. Phys. B 613 (2001) 306 [hep-th/0101027];

P. Binetruy, C. Charmousis, S.C. Davis and J.-F. Dufaux, Avoidance of naked singularities in

dilatonic brane world scenarios with a Gauss-Bonnet term, Phys. Lett. B 544 (2002) 183

[hep-th/0206089];

C. Charmousis, S.C. Davis and J.-F. Dufaux, Scalar brane backgrounds in higher order

curvature gravity, JHEP 12 (2003) 029 [hep-th/0309083].

[18] J.-W. Chen, M.A. Luty and E. Ponton, A critical cosmological constant from millimeter extra

dimensions, JHEP 09 (2000) 012 [hep-th/0003067].

[19] S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football-shaped

extra dimensions, hep-th/0302067;

I. Navarro, Codimension two compactifications and the cosmological constant problem, JCAP

09 (2003) 004 [hep-th/0302129];

Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small

cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389

[hep-th/0304256];

I. Navarro, Spheres, deficit angles and the cosmological constant, Class. and Quant. Grav. 20

(2003) 3603 [hep-th/0305014];
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